O.P.Code: 20ME0303

regeneration.

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year I Semester Supplementary Examinations February-2024 BASIC THERMODYNAMICS

	BASIC THERMODYNAMICS			
	(Agricultural Engineering)			
Tim	e: 3 Hours	Max.	Mark	s: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)			
	UNIT-I			
1	a What is a thermodynamic system? Explain different types of systems	CO1	L1&	6 M
	with suitable examples.	601	L2	-
	b What do mean by property? Distinguish between intensive and	COI	L1	6M
	extensive property.			
	OR	001	T =	CNA
2	a Compare work transfer and heat transfer with neat sketches.	CO1	L5	6M
	b Show that work is a path function and not a property.	CO1	L1	6 M
	UNIT-II	~~~	T 4 0	403.5
3	What is Steady Flow Process? Derive Steady Flow Energy	CO ₂	L1&	12M
	Equation(SFEE) for an open system.		L3	
	OR	~~	~ .	
4	a One kg of Air is heated from 200C to 1050 C. Find the change of	CO ₂	L3	6 M
	internal energy and change of enthalpy. Assume Cp=1.01 KJ/KgK and			
	Cv=0.72 KJ/KgK.	000	T 4	(D.F.
	b In an air motor cylinder the compressed air has an internal energy of	CO ₂	L4	6M
	450 kJ/kg at the beginning of the expansion and an internal energy of			
	220 kJ/kg after expansion. If the work done by the air during the			
	expansion is 120 kJ/kg, calculate the heat flow to and from the			
	cylinder.			
	UNIT-III	000	.	107.5
5	Derive the relation for Work done, Heat Transfer and Change enthalpy	CO3	L3	12M
	of an Isochoric Process.			
	OR	COA	т.а	107/
6	A piston-cylinder arrangement contains 0.05 m3 of nitrogen at 1 bar	CO3	L3	12M
	and 280 K. The piston moves inwards and the gas is compressed			
	isothermally and reversibly until the pressure becomes 5 bar.			
	Determine :(i) Change in entropy. (ii) Workdone. Assume nitrogen to			
	be a perfect gas.			
	UNIT-IV	GO 4	T (107.5
7	Develop the expression for air standard efficiency for diesel engine.	CO ₄	L6	12M
	OR	~~ 1		407.5
8	Build the phase equilibrium diagram for a pure substance P-V, P-T,	CO ₄	L3	12M
	T-S plot with relevant constant property line.			
	UNIT-V	*		
9	Describe the different operations of Rankine cycle and also derive the	CO5	L1	12M
	expression for its efficiency.			
	OR			4.0
10	Explain the process of improving Rankine cycle efficiency with	CO ₅	L2	12M

*** END ***

Mr. I for a second of the seco

If I have been a second or the second of the